您好,欢迎来到 - 67学习网 - http://www.67xuexi.com !

高一数学测试题精选

摘要:5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为()A.9B.8C.7D.6解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.同理y=4,z=2.∴x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且≠1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a>0,a2=49,则log23a=________.解析:由a>0,a2=(23)2,可知a=23,∴log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e
高一数学测试题精选,标签:高一数学学习方法,高一学习计划,http://www.67xuexi.com

  5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x+y+z的值为()

  A.9B.8

  C.7D.6

  解析:选A.∵log2(log3x)=0,∴log3x=1,∴x=3.

  同理y=4,z=2.∴x+y+z=9.

  6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且≠1),则logx(abc)=()

  A.47B.27

  C.72D.74

  解析:选D.x=a2=b=c4,所以(abc)4=x7,

  所以abc=x74.即logx(abc)=74.

  7.若a>0,a2=49,则log23a=________.

  解析:由a>0,a2=(23)2,可知a=23,

  ∴log23a=log2323=1.

  答案:1

  8.若lg(lnx)=0,则x=________.

  解析:lnx=1,x=e.

  答案:e


Tag:高一数学高一数学学习方法,高一学习计划高中学习 - 高一学习 - 高一数学