[10-20 18:10:12] 来源:http://www.67xuexi.com 高二数学 阅读:85209次
【概念及知识点】
一、定义
数量积即点积。
在数学中,数量积(dot product; scalar product,也称为点积、点乘)是接受在实数R上的两个矢量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。
两个矢量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:
a·b=a1b1+a2b2+……+anbn
使用矩阵乘法并把(纵列)矢量当作n×1 矩阵,点积还可以写为:
a·b=a^T*b,这里的a^T指示矩阵a的转置。
二、简介
点积的值由以下三个值确定:
u的大小、v的大小、u,v夹角的余弦。在u,v非零的前提下,点积如果为负,则u,v形成的角大于90度;如果为零,那么u,v垂直;如果为正,那么u,v形成的角为锐角。
点积得到两个向量的夹角的cos值,通过它可以知道两个向量的相似性,利用点积可判断一个多边形是否面向摄像机还是背向摄像机
向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物理离光照的轴线越近,光照越强。运算律
1.交换律:α·β=β·α 2.分配律:(α+β)·γ=α·γ+β·γ 3.若λ为数:(λα)·β=λ(α·β)=α·(λβ) 若λ、μ为数::(λα)·(μβ)=λμ(α·β) 4.α·α=|α|^2 ,此外:α·α=0〈=〉α=0。 向量的数量积不满足消去律,即一般情况下:α·β=α·γ,α≠0 ≠〉β=γ。 向量的数量积不满足结合律,即一般(α·β)·γ ≠〉α·(β·γ) 相互垂直的两向量数量积为0
三、坐标表示
已知两个非零向量a=(x1,y1),b=(x2,y2),则有a·b=x1x2+y1y2,即两个向量的数量积等于它们对应坐标的乘积的和。
四、应用
平面向量的数量积a·b是一个非常重要的概念,利用它可以很容易地证明平面几何的许多命题,例如勾股定理、菱形的对角线相互垂直、矩形的对角线相等等 如证明勾股定理: Rt△ABC中,∠C=90°,则|CA|^2+|CB|^2=|AB|^2: 因AB = CB-CA,
所以AB·AB =(CB-CA)·(CB-CA)= CB·CB-2CA·CB+CA·CA; 由∠C=90°,有CA⊥BD,于是CA·CB=0 所以AB·AB=AC·AC+CB·CB 菱形对角线相互垂直: 菱形ABCD中,点O为对角线AC、BD的交点,求证AC⊥BD 设|AB|=|BC|=|CD|=|DA|=a 因AC=AB+BC;BD=BC+CD
所以AC·BD=(AB+BC)(BC+CD)=a^2(2cosα+2cosπ-α ) 又因为cosα=-cosπ-α
所以AC·BD=(AB+BC)(BC+CD)=a^2(2cosα+2cosπ-α )=0 AC⊥BD
在生产生活中,点积同样应用广泛。利用点积可判断一个多边形是否面向摄像机还是背向摄像机。向量的点积与它们夹角的余弦成正比,因此在聚光灯的效果计算中,可以根据点积来得到光照效果,如果点积越大,说明夹角越小,则物理离光照的轴线越近,光照越强。物理中,点积可以用来计算合力和功。若b为单位矢量,则点积即为a在方向b的投影,即给出了力在这个方向上的分解。功即是力和位移的点积。计算机图形学常用来进行方向性判断,如两矢量点积大于0,则它们的方向朝向相近;如果小于0,则方向相反。矢量内积是人工智能领域中的神经网络技术的数学基础之一,此方法还被用于动画渲染(Animation-Rendering)。
【练习题】
1、已知向量a=(1,-1),b=(2,x),若a·b=1,则x等于 ( )
A.-1 B. C.
D.1
2、设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|等于 ( )
A. B.
C.2 D.10
【参考答案】
1、D
2、B