初三数学相似三角形专项训练,标签:中考数学复习资料,中考数学答题技巧,http://www.67xuexi.com
相似三角形复习
一、基本知识及需要说明的问题:
(一)比例的性质
1.比例的基本性质:
此性质非常重要,要求掌握把比例式化成等积式、把等积式转化成比例的方法。
2.合、分比性质:
注意:此性质是分子加(减)分母比分母,不变的是分母。
如:已知
证明:∵ ∴ ∴ ∴
3.等比性质:若 则 .
4.比例中项:若 的比例中项。
(二)平行线分线段成比例定理
1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 已知 l1 ∥ l2 ∥ l3 ,A D l1B E l2
C F l3
可得 等。
2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例。 AD EB C
由DE∥BC可得: .此推论较原定理应用更加广泛,条件是平行。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例。那么这条直线平行于三角形的第三边。
此定理给出了一种证明两直线平行方法,即:利用比例式证平行线。
4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例。 AD EB C
说明:①此定理和平行线分线段成比例定理的异同相同点:都是平行线不同点:平行线分线段成比例定理的推论是两条平行线截其它两边所成的对应线段成比例,即AD与AE,DB与EC,AB与AC这六条线段 , 而此定理是三角形的三边对应成比例。即 ,只要有图形中的 ,它一定是△ADE的三边与△ABC的三边对应成比例。
②注意:条件(平行线的应用)在作图中,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比。
如:如图(1),已知BD:CD=2:3,AE:ED=3:4
求:AF:FC
A
F A A
F F
E E G E
B D C B D C B D G C图(1) 图(2) 图(3)辅助线当然是添加平行线。但如图(2),如果过D作DG∥BF,则在FC中插入了 G 点,不利求结论AF:FC;如图(3)如果过F做FG∥AD交CD于G时,在CD上插入G,条件BD:DC=2:3就不好用了。因此应过D做DG∥AC交BF于G,此辅助线做法既不破坏BD:DC,又不破坏AE:ED,还不破坏AE:FC.
解: 过D做DG∥AC交BF于G
∵BD:DC=2:3 ∴BD:BC=2:5 A则DG:CF=2:5 设DG=2 CF=5 FAE:ED=3:4 AF:DG=3:4 AF:2 =3:4 G EAF=1.5 AF:FC=1.5 :5 =3:10B D C
(三)相似三角形
1、相似三角形的判定
①两角对应相等的两个三角形相似(此定理用的最多);②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似;④直角边和斜边对应成比例的两个直角三角形相似。
2、直角三角形斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似。
3、相似三角形的性质
①相似三角形对应角相等、对应边成比例。
Tag:中考数学复习资料,中考数学复习资料,中考数学答题技巧,初中教育 - 中考复习 - 中考数学复习资料