初三数学随机事件练习考试试卷
[10-20 18:08:35] 来源:http://www.67xuexi.com 中考数学复习资料 阅读:85880次
摘要:随机事件 一、选择题 1.下列试验能够构成事件的是 A.掷一次硬币 B.射击一次 C.标准大气压下,水烧至100℃ D.摸彩票中头奖 2. 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是 A.必 然事件 B.不可能事件 C.随机事件 D.以上选项均不正确 3. 随机事件A的频率 满足 A. =0 B. =1 C.0< <1 D.0≤ ≤1 4. 下面事件是 必然事件的有 ①如果a、b∈R,那么a?b=b?a ②某人买彩票中奖 ③3+5>10 A.① B.② C.③ D.①② 5. 下面事件是随机事件的有 ①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气压下,水在1℃时结冰 A.② B.③ C.① D.②③ 1.甲、乙2人下棋,下成和棋的概率是 ,乙获胜的概率是 ,则甲不胜的概率是 A. B. C. D. 2. 从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是 A.“至少有一个黑球&r
初三数学随机事件练习考试试卷,标签:中考数学复习资料,中考数学答题技巧,http://www.67xuexi.com
随机事件
一、选择题
1.下列试验能够构成事件的是
A.掷一次硬币 B.射击一次
C.标准大气压下,水烧至100℃ D.摸彩票中头奖
2. 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是
A.必 然事件 B.不可能事件
C.随机事件 D.以上选项均不正确
3. 随机事件A的频率 满足
A. =0 B. =1 C.0< <1 D.0≤ ≤1
4. 下面事件是 必然事件的有
①如果a、b∈R,那么a?b=b?a ②某人买彩票中奖 ③3+5>10
A.① B.② C.③ D.①②
5. 下面事件是随机事件的有
①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气压下,水在1℃时结冰
A.② B.③ C.① D.②③
1.甲、乙2人下棋,下成和棋的概率是 ,乙获胜的概率是 ,则甲不胜的概率是
A. B. C. D.
2. 从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“至少有一个红球”
C.“恰有一个黑球”与“恰有两个黑球”
D.“至少有一个黑球”与“都是红球”
3. 抽查10件产品,设事件A:至少有两件次品,则A的对立事件为
A.至多两件次品 B.至多一件次品
C.至多两件正品 D.至少两件正品
4. 从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于
4.85 g的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是
A.0.62 B.0.38 C.0.02 D.0.68
5. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03、丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为
A.0.09 B.0.98 C.0.97 D.0.96
二、填空题
1. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效 数字):
时间范围 1年内 2年内 3年内 4年内
新生婴儿数 5544 9013 13520 17191
男婴数 2716 4899 6812 8590
男婴出生频率
(1)填写表中的男婴出生频 率;
(2)这一地区男婴出生的概率约是_______.
2. 某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是 .
3 .某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是______.
4.我国西部一个地区的年降水量在下列区间内的概率如下表所示:
年降水量/mm [100,150) [150,200) [200,250) [250,300]
概率 0.21 0.16 0.13 0.12
则年降水量在[200,300](mm)范围内的概率是___________.
三、解答题
1.判断下列每对事件是否为互斥事件?是否为对立事件?
从一副桥牌(52张)中,任取1张,
(1)“抽出红桃”与“抽出黑桃”;
(2)“抽出红色牌”与“抽出黑色牌”;
(3)“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”
2. 从一批准备出厂的电视机中,随机抽取10台进行质量检查,其中有一台是次品,能否说这批电 视机的次品的概率为0.10?
3. 某篮球运动员在同一条件下进行投篮练习,结果如下表所示:
投篮次数n 8 10 15 20 30 40 50
进球次数m 6 8 12 17] 25 32 38
进球频率
(1)计算表中进球的频 率;
(2)这位运动员投篮一次,进球的概率约是多少?
4. 用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:
直径
6.88
6.89
6.90
6.91
6.92
6.93
6.94
6.95
6.96
6.97
1
2
10
17
17
26
15
8
2
2
从这100个螺母中,任意抽取1个,求事件A(6.92
事件B(6.906.96)、事件D(d≤6.89)的频率。
5. 某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)
6. 为了估计水库中的鱼的尾数,可以 使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库。经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾。试根据上述数据,估计水库内鱼的尾数。
7. 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率,
(2) 至少射中7环的概率;
(3)射中环数不足8环的概率。
Tag:中考数学复习资料,中考数学复习资料,中考数学答题技巧,初中教育 - 中考复习 - 中考数学复习资料